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The Hardness of K-means clustering

Definition
Given a multiset S ⊆ Rd , an integer k and L ∈ R, is there a subset
T ⊂ Rd with |T | = k such that∑

x∈S
min
t∈T
‖x− t‖2 ≤ L?

Theorem
The k-means clustering problem is NP-complete even for d = 2.

4 / 50



Images/cinvestav-1.jpg

The Hardness of K-means clustering

Definition
Given a multiset S ⊆ Rd , an integer k and L ∈ R, is there a subset
T ⊂ Rd with |T | = k such that∑

x∈S
min
t∈T
‖x− t‖2 ≤ L?

Theorem
The k-means clustering problem is NP-complete even for d = 2.

4 / 50



Images/cinvestav-1.jpg

Reduction

The reduction to an NP-Complete problem
Exact Cover by 3-Sets problem

Definition
Given a finite set U containing exactly 3n elements and a collection
C = {S1, S2, ..., Sl} of subsets of U each of which contains exactly 3
elements, Are there n sets in C such that their union is U?
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However

There are efficient heuristic and approximation algorithms
Which can solve this problem
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K-Means - Stuart Lloyd(Circa 1957)

History
Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a
signal data set.

Something Notable
The paper was published until 1982

Basically given N vectors x1, ...,xN ∈ Rd

It tries to find k points µ1, ...,µk ∈ Rd that minimize the expression (i.e.
a partition S of the vector points):

N∑
k=1

∑
i:xi∈Ck

‖xi − µk‖
2 =

N∑
k=1

∑
i:xi∈Ck

(xi − µk)
T (xi − µk)
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K-means clustering

K-means
It is a partitional clustering algorithm.

Definition
Let the set of data points (or instances) D be {x1, · · · ,xn} where
xi = (xi1, · · · , xir)T :

The K-means algorithm partitions the given data into K clusters.
Each cluster has a cluster center, called centroid.
K is specified by the user.
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K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.

10 / 50



Images/cinvestav-1.jpg

K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.

10 / 50



Images/cinvestav-1.jpg

K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.

10 / 50



Images/cinvestav-1.jpg

K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.

10 / 50



Images/cinvestav-1.jpg

K-means algorithm
The K-means algorithm works as follows
Given k as the possible number of cluster:

1 Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

I {v1, · · · ,vk}
2 Assign each data point to the closest centroid

I ci = arg min
j
{dist(xi − vj)}

3 Re-compute the centroids using the current cluster memberships.

I vj =

n∑
i=1

I(ci = j)xi

n∑
i=1

I(ci = j)

4 If a convergence criterion is not met, go to 2.

10 / 50



Images/cinvestav-1.jpg

What is the code trying to do?

It is trying to find a partition S
K-means tries to find a partition S such that it minimizes the cost
function:

min
S

N∑
k=1

∑
i:xi∈Ck

(xi − µk)
T (xi − µk) (1)

Where µk is the centroid for cluster Ck

µk = 1
Nk

∑
i:xi∈Ck

xi (2)

Where Nk is the number of samples in the cluster Ck.
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What Stopping/convergence criterion should we use?

First
No (or minimum) re-assignments of data points to different clusters.

Second
No (or minimum) change of centroids.

Third
Minimum decrease in the sum of squared error (SSE),

Ck is cluster k.
vk is the centroid of cluster Ck.

SSE =
K∑
k=1

∑
x∈ck

dist (x,vk)2

13 / 50
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The distance function

Actually, we have the following distance functions:

Euclidean

dist(x,y) = ||x− y|| =
√

(x− y)T (x− y)

Manhattan

dist(x,y) = ||x− y||1 =
n∑
i=1
|xi − yi|

Mahalanobis

dist(x,y) = ||x− y||A =
√

(x− y)TA(x− y)
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An example

Dropping two possible centroids
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An example

Calculate the memberships
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An example

We re-calculate centroids
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An example

We re-calculate memberships
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An example

We re-calculate centroids and keep going
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Strengths of K-means

Strengths
Simple: easy to understand and to implement
Efficient: Time complexity: O(tKN), where N is the number of data
points, K is the number of clusters, and t is the number of iterations.
Since both K and t are small. K-means is considered a linear
algorithm.

Popularity
K-means is the most popular clustering algorithm.

Note that
It terminates at a local optimum if SSE is used. The global optimum is
hard to find due to complexity.
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Weaknesses of K-means

Important
The algorithm is only applicable if the mean is defined.

For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

Outliers
The algorithm is sensitive to outliers.

Outliers are data points that are very far away from other data points.
Outliers could be errors in the data recording or some special data
points with very different values.
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Weaknesses of K-means: Problems with outliers

A series of outliers
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Weaknesses of K-means: Problems with outliers

Nevertheless, if you have more dense clusters
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Weaknesses of K-means: How to deal with outliers

One method
To remove some data points in the clustering process that are much
further away from the centroids than other data points.

To be safe, we may want to monitor these possible outliers over a few
iterations and then decide to remove them.

Another method
To perform random sampling.

Since in sampling we only choose a small subset of the data points,
the chance of selecting an outlier is very small.
Assign the rest of the data points to the clusters by distance or
similarity comparison, or classification.

27 / 50
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Weaknesses of K-means (cont...)

The algorithm is sensitive to initial seeds
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Weaknesses of K-means : Different Densities

We have three cluster nevertheless
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Weaknesses of K-means: Non-globular Shapes

Here, we notice that K-means may only detect globular shapes
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Weaknesses of K-means: Non-globular Shapes

However, it sometimes work better than expected

5 0 5
6

4

2

0

2

4

6

5 0 5
6

4

2

0

2

4

6

31 / 50



Images/cinvestav-1.jpg

Outline

1 K-Means Clustering
The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

32 / 50



Images/cinvestav-1.jpg

Consider the following

Theorem
Every matrix A ∈ Rm×n has an SVD.

Frobenious Matrix Norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace (ATA)
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Then, you have a the Eckhart-Young Theorem

Theorem
Let A be a real m× n matrix. Then for any k ∈ N and any m×m
orthogonal projection matrix P of rank k, we have

‖A− PkA‖F ≤ ‖A− PA‖F

I with Pk =
∑k

i=1 uiu
T
i
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Thus

We have the Covariance matrix

S = 1
N − 1

N∑
i=1

(xi − x) (xi − x)T

Therefore, we have the following decomposition

S = UΣUT

Where UUT = I and U is a d× d matrix

35 / 50
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Then

PCA can also re-write the cost function

fPCA = min
Pk

∑
i∈[n]
‖xi − Pkxi‖2 = min

Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

Where
Given that Pk is a projection into dimension k and y ∈ Pk means that
Pky = y

Furthermore

arg min
y∈P
‖x− y‖ = Px
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Thus, using the Eckhart-Young Theorem

Assume P ∗k which contains the k optimal centers
Given that µj ∈ P ∗k

fk−mean =
∑
i∈[n]

min
j∈[k]

∥∥∥xi − µ∗j∥∥∥2

≥
∑
i∈[n]

min
yi∈P ∗k

‖xi − yi‖
2

≥ min
Pk

∑
i∈[n]

min
yi∈Pk

‖xi − yi‖
2

= min
Pk

∑
i∈[n]
‖xi − Pkxi‖2

= fPCA
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Therefore

Now, consider solving k-means on the points yi instead
They are embedded into dimension exactly k by projection Pk

Therefore, given Pxi = yi and µ̂j = Pµj

Where the Ŝ and µ̂ are the assignments and centers of the projected
points yi:∑

j∈[k]

∑
i∈Sj

‖xi − µj‖2 ≥
∑
j∈[k]

∑
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‖Pxi − Pµj‖2

=
∑
j∈[k]

∑
i∈Sj

‖yi − µ̂j‖
2

≥
∑
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∑
i∈Ŝj

‖yi − µ̂j‖
2 = f∗k−means
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Where the Ŝ and µ̂ are the assignments and centers of the projected
points yi:∑

j∈[k]

∑
i∈Sj

‖xi − µj‖2 ≥
∑
j∈[k]

∑
i∈Sj

‖Pxi − Pµj‖2

=
∑
j∈[k]

∑
i∈Sj

‖yi − µ̂j‖
2

≥
∑
j∈[k]

∑
i∈Ŝj
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Therefore, your best beat

Steps
1 Compute the PCA of the points xi into dimension k.
2 Solve k-means on the points yi in dimension k.
3 Output the resulting clusters and centers.
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Given that

We have that

fnew =
∑
j∈[k]

∑
i∈S∗j

∥∥∥xi − µ∗j∥∥∥2
= ∗

Therefore by the fact that xi − yi and yi − µ∗j are perpendiculars

∗ =
∑
j∈[k]

∑
i∈S∗j

{
‖xi − yi‖

2 +
∥∥∥yi − µ∗j∥∥∥2

}
= ∗∗

Finally

∗∗ =
∑
i∈[n]
‖xi − yi‖

2 +
∑
j∈[k]

∑
i∈S∗j

∥∥∥yi − µ∗j∥∥∥2
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Therefore, we have

Something Notable

fPCA + f∗k−means ≤ 2fk−means
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Until now, we have assumed a Euclidean metric space

Important step
The cluster representatives m1, ...,mk in are taken to be the means of
the currently assigned clusters.

We can generalize this by using a dissimilarity D (xi,xi′)
By using an explicit optimization with respect to m1, ...,mk
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Algorithm K-meoids

Step 1
For a given cluster assignment C find the observation in the cluster
minimizing total distance to other points in that cluster:

i∗k = arg min
{i|C(i)=k}

∑
C(i′)=k

D (xi,xi′)

I Then mk = xi∗
k
k = 1, ...,K are the current estimates of the cluster

centers.
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Now

Step 2
Given a current set of cluster centers m1, ...,mk, minimize the total
error by assigning each observation to the closest (current) cluster
center:

C (i) = arg min
1≤k≤K

D (xi,mk)

Iterate over steps 1 and 2
Until the assignments do not change.

47 / 50



Images/cinvestav-1.jpg

Now

Step 2
Given a current set of cluster centers m1, ...,mk, minimize the total
error by assigning each observation to the closest (current) cluster
center:

C (i) = arg min
1≤k≤K

D (xi,mk)

Iterate over steps 1 and 2
Until the assignments do not change.

47 / 50



Images/cinvestav-1.jpg

Outline

1 K-Means Clustering
The NP-Hard Problem
K-Means Clustering Heuristic
Convergence Criterion
The Distance Function
Example
Properties of K-Means
K-Means and Principal Component Analysis

2 K-Meoids
Introduction
The Algorithm
Complexity

48 / 50



Images/cinvestav-1.jpg

Complexity

Problem, solving the first step has a complexity for k = 1, ..., K

O
(
N2
k

)
Given a set of cluster “centers,” {i1, i2, ..., iK}

Given the new assignments

C (i) = arg min
1≤k≤K

D (xi,mk)

I It requires a complexity of O (KN) as before.
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Therefore

We have that
K-medoids is more computationally intensive than K-means.
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