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K-Means Clustering
@ The NP-Hard Problem



The Hardness of K-means clustering

Definition

@ Given a multiset S C R? | an integer k and L € R, is there a subset
T C R% with |T| = k such that

> min ||z — ¢ < L?
teT
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The Hardness of K-means clustering

Definition

@ Given a multiset S C R? | an integer k and L € R, is there a subset
T C R% with |T| = k such that

> min ||z — ¢ < L?
teT
xzeS

@ The k-means clustering problem is NP-complete even for d = 2. \
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Reduction

The reduction to an NP-Complete problem
@ Exact Cover by 3-Sets problem

Definition

@ Given a finite set U containing exactly 3n elements and a collection
C ={51,59,..., 5} of subsets of U each of which contains exactly 3
elements, Are there n sets in C such that their union is U?




However

There are efficient heuristic and approximation algorithms

@ Which can solve this problem




Outline

e K-Means Clustering

@ K-Means Clustering Heuristic



K-Means - Stuart Lloyd(Circa 1957)

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a
signal data set.
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K-Means - Stuart Lloyd(Circa 1957)

Invented by Stuart Loyd in Bell Labs to obtain the best quantization in a
signal data set.

Something Notable
The paper was published until 1982

Basically given N vectors &1, ..., zy € R?

It tries to find k points gy, ..., up € R? that minimize the expression (i.e.
a partition S of the vector points):

g: Z sz—ukll Z Z (azi—pk)

k=1 1:x,€C} =14i:x;€C}




K-means clustering

It is a partitional clustering algorithm.
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K-means clustering

It is a partitional clustering algorithm. \

Let the set of data points (or instances) D be {x1,---,x,} where
"

X; = (i1, Tir
@ The K-means algorithm partitions the given data into K clusters.

@ Each cluster has a cluster center, called centroid.

o K is specified by the user.




K-means algorithm

The K-means algorithm works as follows

Given k as the possible number of cluster:
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Given k as the possible number of cluster:

@ Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,
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K-means algorithm

The K-means algorithm works as follows

Given k as the possible number of cluster:

@ Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

> {vi, -, Vi)
@ Assign each data point to the closest centroid

> ¢; = arg mln{dZSt(Xz - Vj)}
J
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The K-means algorithm works as follows

Given k as the possible number of cluster:

@ Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

> {vi, -, Vi)
@ Assign each data point to the closest centroid

> ¢; = arg mln{dZSt(Xz - Vj)}
J

© Re-compute the centroids using the current cluster memberships.
n
ZI(Ci =Jj)xi
R 7 — ——
D Ie=1)
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K-means algorithm

The K-means algorithm works as follows

Given k as the possible number of cluster:

@ Randomly choose K data points (seeds) to be the initial centroids,
cluster centers,

> {vi, -, Vi)
@ Assign each data point to the closest centroid

> ¢; = arg mln{dZSt(Xz - Vj)}
J

© Re-compute the centroids using the current cluster memberships.
n
ZI(Ci =Jj)xi
R 7 — ——
D Ie=1)
i=1

@ If a convergence criterion is not met, go to 2.
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What is the code trying to do?

It is trying to find a partition S

K-means tries to find a partition .S such that it minimizes the cost
function:

N
mSin Z Z (zi — Hk)T (@i — p) (1)

k=1 1i:x;€C}
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What is the code trying to do?

It is trying to find a partition S

K-means tries to find a partition .S such that it minimizes the cost
function:

N
msin Z Z (zi — Hk)T (@i — p) (1)

k=14:x2,€C}

Where 11, is the centroid for cluster C},

Where N, is the number of samples in the cluster C},.
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Outline

e K-Means Clustering

@ Convergence Criterion
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What Stopping/convergence criterion should we use?

No (or minimum) re-assignments of data points to different clusters.
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What Stopping/convergence criterion should we use?

No (or minimum) re-assignments of data points to different clusters.

No (or minimum) change of centroids.

Minimum decrease in the sum of squared error (SSE),

o (Y} is cluster k.
@ vy is the centroid of cluster Cy.

K
SSE = Z Z dist (x,vk)2

k=1 x€ck

13/50
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e K-Means Clustering

@ The Distance Function
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The distance function

Actually, we have the following distance functions:

dist(x,y) = |Ix = yll = /(x - )T (x — y)
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The distance function

Actually, we have the following distance functions:

dist(x,y) = |Ix = yll = /(x - )T (x — y)

v

Manhattan

dist(x,y) =||x —y|h = Z |zi — yil
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The distance function

Actually, we have the following distance functions:

Euclidean

dist(x,y) = |Ix = yll = /(x - )T (x — y)

Manhattan

dist(x,y) =||x —y|h = Z |zi — yil

Mahalanobis

dist(x,y) =||x —ylla = \/(X —y)TAx—y)

| A

N,
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o K-Means Clustering

@ Example
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An example

Dropping two possible centroids

A

o °
(OING) .0 @ o0
®O e © oo.:

0® " % 56
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An example

Calculate the memberships
A
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An example

We re-calculate centroids
A
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An example

We re-calculate memberships
A
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An example

We re-calculate centroids and keep going
A

21/50



Outline

e K-Means Clustering

@ Properties of K-Means
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Strengths of K-means

@ Simple: easy to understand and to implement
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Strengths of K-means

Strengths
@ Simple: easy to understand and to implement

o Efficient: Time complexity: O(tKN), where N is the number of data
points, K is the number of clusters, and ¢ is the number of iterations.

@ Since both K and t are small. K-means is considered a linear
algorithm.

Popularity

K-means is the most popular clustering algorithm.

It terminates at a local optimum if SSE is used. The global optimum is
hard to find due to complexity.
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Weaknesses of K-means

Important

The algorithm is only applicable if the mean is defined.

24 /50



Weaknesses of K-means

Important

The algorithm is only applicable if the mean is defined.

@ For categorical data, K-mode - the centroid is represented by most
frequent values.

24 /50



Weaknesses of K-means

The algorithm is only applicable if the mean is defined.

@ For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition J

The user needs to specify K.

24 /50



Weaknesses of K-means

The algorithm is only applicable if the mean is defined.

@ For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

The algorithm is sensitive to outliers.

24 /50



Weaknesses of K-means

The algorithm is only applicable if the mean is defined.

@ For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

The algorithm is sensitive to outliers.
@ Outliers are data points that are very far away from other data points.

24 /50



Weaknesses of K-means

The algorithm is only applicable if the mean is defined.

@ For categorical data, K-mode - the centroid is represented by most
frequent values.

In addition
The user needs to specify K.

The algorithm is sensitive to outliers.
@ Outliers are data points that are very far away from other data points.

@ Outliers could be errors in the data recording or some special data
points with very different values.
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Weaknesses of K-means: Problems with outliers

A series of outliers

Initial Data Final Clusters

oF : : : B : : :

3 3

2 2 .

» Centroids
Ir ox < X ! o @ x X
XX Fx X 203 % ® o X

o <y e o o . 5 7
= « X ><><><>< % L e € .. X >><<
2 =7
-3 1-3

-2 2 0 2 4 6 s -4 -2 0 2 4 6 8

v
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Weaknesses of K-means: Problems with outliers

Nevertheless, if you have more dense clusters

Initial Data Final Clusters
T T T T 4 T T T T
ol
2 Centroids
all
R0 B
all
il
4l .
—4 -4
oy -2 [ 2 ) 6 871g = 0 D] ) 6 8
.
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Weaknesses of K-means: How to deal with outliers

To remove some data points in the clustering process that are much
further away from the centroids than other data points.
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Weaknesses of K-means: How to deal with outliers

To remove some data points in the clustering process that are much
further away from the centroids than other data points.

@ To be safe, we may want to monitor these possible outliers over a few
iterations and then decide to remove them.

v

Another method

To perform random sampling.

@ Since in sampling we only choose a small subset of the data points,
the chance of selecting an outlier is very small.

@ Assign the rest of the data points to the clusters by distance or
similarity comparison, or classification.
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Weaknesses of K-means (cont...)

The algorithm is sensitive to

Initial Centroids

Final Clusters

Initial Centroidi X X

Final Centroids
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Weaknesses of K-means : Different Densities

We have three cluster nevertheless

DATA 3 Clusters

10 -10

-5

10

10
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Weaknesses of K-means: Non-globular Shapes

Here, we notice that K-means may only detect globular shapes

N € -4 -2 0 2 4 6 210 8 6 -4 -2 0 2 4 6
GLOBULAR DATA K-Means Results

NO
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Weaknesses of K-means: Non-globular Shapes

However, it sometimes work better than expected

Centroids

=5 ) B -5 0 5
NO GLOBULAR DATA K-Means Results
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0 K-Means Clustering

@ K-Means and Principal Component Analysis
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Consider the following

e Every matrix A € R™*" has an SVD. l
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Consider the following

e Every matrix A € R™*" has an SVD. I

Frobenious Matrix Norm

Al = ZZa?J \/trace (AT A)
i=1j5=1
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Then, you have a the Eckhart-Young Theorem

@ Let A be a real m x n matrix. Then for any k£ € N and any m x m
orthogonal projection matrix P of rank k, we have

A= PeAllp < [[A = PA|

» with P, = Zle w;ul

%
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Thus

We have the Covariance matrix
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Thus

We have the Covariance matrix

Therefore, we have the following decomposition

S =UxuT

@ Where UUT =T and U is a d x d matrix
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Orthogonal Projection

Therefore, we have that U is a orthogonal projection

e Giventhat UUT =T and Uz =
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Orthogonal Projection

Therefore, we have that U is a orthogonal projection

e Giventhat UUT =T and Uz =

Now, we can re-write k-means

2
fr—mean #Ifllgk E Helb?]n i MJH
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Then

PCA can also re-write the cost function

frca —mln Z i — Py —mm Z melllDl s — y, >
" igln) " ieln]
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Then

PCA can also re-write the cost function

fpca = mm Z @i — PkaH = mln Z ymelll,} i — yzH2
ze[n} i€[n] §

@ Given that Py is a projection into dimension k£ and y € P, means that
Py=y

v
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Then

PCA can also re-write the cost function

frca —mm Z i — Py —mm Z rnel}IDl s — y, >
ze[n} i€[n] §

@ Given that Py is a projection into dimension k£ and y € P, means that
Py=y

v

e — ol — P
sty [l — g = e

37 /50



Thus, using the Eckhart-Young Theorem

Assume P} which contains the k optimal centers

o Given that p; € Py

<12
@i = |

fr—mean = Y min‘

i€[n] JEk]
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Thus, using the Eckhart-Young Theorem

Assume P} which contains the k optimal centers

o Given that p; € Py

fr—mean = Y min‘

i€[n] JEk]

> i —al?
>N min_{z; - y;|

i€[n] 7tk

<12
@i = |

> mi . a2
> min ), min ||z -y
1€[n]
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Thus, using the Eckhart-Young Theorem

Assume P} which contains the k optimal centers

o Given that p; € Py

2
fr—mean = Z min ‘ T — M;H
ie[n]]e[k]
> min ||x; — vy, 2
> g o= wi
> min min ||z; — y;|?
Pk: 7:6[ }y1 P

= mln Z i — Pyax;)?

ze[n
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Thus, using the Eckhart-Young Theorem

Assume P} which contains the k optimal centers

o Given that p; € Py
. * 2
fr—mean = Z min ‘ Li — MjH
ie[n]]e[k]
> 3 min i — 2
i€[n] yiehy
> mi 112
> min ), min ||z -y
i€[n]
= mln Z l|le; — Pka:iHQ
ze[n
= fpca
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Therefore

Now, consider solving k-means on the points y, instead

@ They are embedded into dimension exactly k by projection P
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Therefore

Now, consider solving k-means on the points y, instead

@ They are embedded into dimension exactly k by projection P

Therefore, given Px; =y, and [i; = P,

o Where the S and [i are the assignments and centers of the projected
points y,:

oD Ml —pill* = D Y I1Pai — Pyl

JE[K] 1€S; JE[K] 1€S;
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Therefore

Now, consider solving k-means on the points y, instead

@ They are embedded into dimension exactly k by projection P

Therefore, given Px; =y, and [i; = P,

o Where the S and [i are the assignments and centers of the projected

points y,:
2 2
2D Mmi—ulP > > Y 1Pmi — Pl
JE[K] 1€S; JE[K] 1€S;

=> > lyi—ml*

JE[K] i€S;
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Therefore

Now, consider solving k-means on the points y, instead

@ They are embedded into dimension exactly k by projection P

Therefore, given Px; =y, and [i; = P,

o Where the S and [i are the assignments and centers of the projected

points y,:
Yo lwi—pl? = Y- D 1P — Pyl
JE[K] 1€S; JE[K] 1€S;
~ 12
=> > llyi—al
Jjelk] i€S;

> Z Z ly; — ;11 = ff_means

]E[k] iegj
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Therefore, your best beat

@ Compute the PCA of the points z; into dimension k.

40 /50



Therefore, your best beat

@ Compute the PCA of the points z; into dimension k.

@ Solve k-means on the points y; in dimension k.

40 /50



Therefore, your best beat

@ Compute the PCA of the points z; into dimension k.

@ Solve k-means on the points y; in dimension k.

© Output the resulting clusters and centers.
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Given that

We have that

2
fnewzzz = *

Jjelk] €S

k
Li — Ky

41 /50



Given that

We have that

2
= %

k
Li — Ky

frw=3 3|

Jjelk] €S

Therefore by the fact that @; — y,; and y, — i are perpendiculars

yi_N;

=2 3 {Im—uil+]

JjE[k] 1€ST

2}:** J
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Given that

We have that

= %

fnew =
JjE[k] i€ST

Therefore by the fact that @; — y,; and y, — i are perpendiculars

2
= k%

=% 5 {llei - wil?

JjE[k] 1€ST

| \

Finally

*x = Z “m’t yz

1€[n] JE[k] i€S7
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Therefore, we have

Something Notable

fPC'A + fl::k—means < 2fk—means
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9 K-Meoids

@ Introduction
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Until now, we have assumed a Euclidean metric space

Important step

@ The cluster representatives myq, ..., my in are taken to be the means of
the currently assigned clusters.
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Until now, we have assumed a Euclidean metric space

Important step

@ The cluster representatives myq, ..., my in are taken to be the means of
the currently assigned clusters.

We can generalize this by using a dissimilarity D (x;, ;)

@ By using an explicit optimization with respect to my, ..., mg
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9 K-Meoids

@ The Algorithm
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Algorithm K-meoids

@ For a given cluster assignment C find the observation in the cluster
minimizing total distance to other points in that cluster:

Z.* — ar min D €T;, Ty
T G C(z): (s, %)

» Then my = x;: k=1,..., K are the current estimates of the cluster
centers.
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Now

o Given a current set of cluster centers myq, ..., m, minimize the total
error by assigning each observation to the closest (current) cluster
center:

C (i) = arg min D (i, my)
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Now

o Given a current set of cluster centers myq, ..., m, minimize the total
error by assigning each observation to the closest (current) cluster
center:

C (i) = arg min D (i, my)

Iterate over steps 1 and 2

@ Until the assignments do not change.
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9 K-Meoids

@ Complexity
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Complexity

Problem, solving the first step has a complexity for k =1, ..., K
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Complexity

Problem, solving the first step has a complexity for k =1, ..., K

Given a set of cluster “centers,” {i1,i2,...,0x}

@ Given the new assignments

C (i) = arg min D (i, my)

> It requires a complexity of O (K N) as before.
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Therefore

We have that
@ K-medoids is more computationally intensive than K-means.
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